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1. Introduction: A Bayesian Approach to Stockpile Reliability

Logistics require the U. S. Armed Forces to purchase weapons, ammunition, and spare

parts in large lots that are stored until the time they are used or retired. The management

and maintenance of such stockpiles face many issues related to the aging of the stored units.

It is well known that, over time, the units degrade to a point that they may fail to function

as intended. In the case of a missile system, functioning as intended typically implies that it

fires and hits the intended target. The central problem of stockpile reliability is to estimate

what fraction of units within the stockpile will work. In other words, we are interested in

determining the probability that a randomly selected unit from the stockpile will function.

Current strategies for assessing the reliability of a stockpile rely on testing the success rate

of a sample of units from the stockpile. For expensive and complex systems, the number of

sampled units for these destructive full-system tests, which are considered the gold-standard

measurements of the success of the system, may necessarily be small. But many other types

of tests, from component tests to visual inspection to functional tests of specific subsys-

tems, are possible and can provide indirect information that can complement the full-system

testing. Typically, the relative proportion of data available from these alternate sources

may dramatically outnumber the full-system tests, and hence their inclusion into analysis

methods can enhance prediction and precision of estimation substantially. The challenge

is to develop a methodology that allows for the integration of various sources of data and

information to assess the performance and reliability of the units in the stockpile.
1
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Los Alamos National Laboratory (LANL) faces related problems in its assessment of the

reliability of the stockpile of nuclear weapons. In the absence of full-system nuclear tests,

we use data from component and subsystem-level tests, plus computer models and simu-

lations, and integrate that information to produce performance estimates, with associated

uncertainty. The integration of component and subsystem data with expert knowledge is

essential for obtaining meaningful estimates of reliability upon which policy decisions can be

made.

Ideally, we would like to have enough full-system tests to be able to accurately assess the

reliability of a stockpile. But due to cost and other considerations, this may not always be

possible. Fortunately, there are often other sources of information available about system

reliability. For example, complex systems can often be described in terms of interrelated

subsystems and components, and test data from component and subsystem tests may be

available. Here not only is information about the reliability of pieces of the full-system

important, but also the specific nature of how these pieces are connected to each other to

produce functionality in the system. (The distinction between a subsystem and a component

may not always be obvious. For this paper, components are the smallest subunits we want to

test and subsystems are portions of the entire system which represent collections of related

components.) Other sources of information also include engineering knowledge related to

the components, the subsystems and/or the full system, visual inspections and other non-

destructive testing, such as electronic diagnostics and battery checks.

The Statistical Sciences Group at LANL continues to develop a suite of methods and

tools, collectively known as Information Integration Technology (IIT), that allow the combi-

nation of information from various sources to predict performance and reliability for complex

systems with limited or no data from full-system tests. In this paper, we describe one ap-

plication of IIT to the assessment of performance, reliability and shelf life of units within a

stockpile that combines full-system tests with component tests and engineering judgment.

The key aspects of this approach that will be explained in some detail in this paper are

(1) a unified method for consistently predicting down from the system level that combines
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with prediction up from the component level data, and (2) how expert judgement and other

indirect sources of knowledge can be incorporated into a single model through informative

Bayeisan priors to maximize the information summarized in the overall model.

2. Application: Missile Overview

2.1. Background and System Model. The methodology presented has been applied to

a particular missile, but for clarity of presentation, we have simplified some details of the

system. We precisely describe the modeling and statistical procedures followed, and preserve

all of the features of the system that provided statistical challenges for the analysis.

Some of the key characteristics of the system presented include the following. The system

can be logically decomposed into subsystems, which are natural groupings of components

focused on a particular task of the mission. Some of the subsystems combine directly to

form the system, while other subsystems may be nested within subsystems. The form of

the system representation is largely driven by where sources of data are available and how

the engineers best feel the system functions can be summarized. Data are available at some,

but not all, of the components and subsystem. There are also several variants of the missile.

Treating each variant as possibly having different reliability can increase the precision of the

estimation process and help provide insights into which variants are more likely to fail.

For the example presented in this paper, we consider a system with three major subsystems

with a total of 13 components. Figure 1 shows an event tree diagram of how subsystems

and components combine to form the system. For more information about event trees, see

Roberts (1987). The components and subsystems are connected by AND gates, implying

that all components and subsystems need to function for the full system to function. The

system is labeled as C1, comprised of a subsystem C2 (made up of two components, C5

and C6, and a subsystem C7 with 8 components, C10 to C17), a component C3, and a

subsystem C4 (made up of 2 components C8 and C9). As mentioned previously, the labeling

of individual parts of the system as components or subsystems is somewhat subjective and

is dependent on what information is available. The key factor in determining what level
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Figure 1. Event Tree Diagram for Missile Reliability

of detail should be included in the summary of the system and subsequent analysis is the

sources of data available. For example, “component” C3 is actually comprised of a collection

of “subcomponents”, which might have been alternately represented as a “subsystem” with

“components”, if data had been available on the subcomponents.

2.2. Data Description. In estimating the reliability of a complex system, it is common to

have test data and prior engineering judgment available at the system, the subsystem, and

the component levels. Methodology for combining these various sources of information in

a consistent fashion has proven problematic (Bier, 1994), and the goal of this paper is to
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describe an IIT approach that resolves this difficulty. For simplicity, we restrict discussion

to systems in which components or subsystems are classified as either functional or not

(pass/fail).

Four sources of data are considered here. The first is full-system data consisting of pass/fail

results from 1249 flight tests. The second is data collected from component or subsystem

tests, also assumed here to take on only pass/fail values. Several collections of observations

are available, ranging from 70 to 100 observations for some, but not all, of the components

and subsystems. Some of the data have covariate information, including storage location

and the age of the system at test, which is not used in this analysis.

Third, engineering judgment regarding the probability that a specific component or sub-

system fails may be available. It represents substantial subjective knowledge about the

working of the system and its intended design that helps to bound the reliability.

A fourth, less precise source of information is engineering judgment stating that a group

of components in a given system or in related systems have similar failure probabilities. For

example, an expert may assert that the reliability of the missile battery is “similar” to the

reliability of a battery in a related missile system, or that reliabilities of types of motors are

similar. Alternately, an expert may judge that all of the components of a given subsystem

are equally likely to cause the failure of that subsystem. This says that the reliability of the

components are thought to be similar, not that the failure mechanisms of the components

are the same.

3. Bayesian Reliability Modeling

3.1. Background. The new methodological advances that are the focus of this paper pri-

marily involve how Bayesian models can be adapted to give consistent sytsem down and

component up representation of success/fail reliability models given different granularity of

the modeling, and some insights into how meaningful and informative Bayesian priors can
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be formed to incorporate multiple sources of indirect supplementary information. To pro-

vide context, it is useful to begin with a review of some related research in Bayesian system

reliability.

As with all statistical models used in system reliability, the first issue is the specification

of the system structure, which formalizes how components and subsystems are related to

each other and to the entire system. Many of the common ways of making this specification

are graphical and include reliability block diagrams, event trees, fault trees, and Bayesian

networks. For more details on any of these approaches see Rausand and Høyland (2004).

Each of these representations implies a particular structure for the way that data are incor-

porated to make inferences about the system as a whole—this structure provides a means of

obtaining the likelihood.

Often the likelihood contains unknown parameters. In classical or frequentist statistics,

the standard approach is to find the value of the parameters that maximizes the likelihood

of the observed data. These estimated parameter values can then be used in conjunction

with the fitted model to obtain predictions and for other inference. Bayesian methodology

allows one to augment the data with expert engineering knowledge via the specification

of an a priori distribution for the unknown parameters, called the prior distribution. The

data are then used to update the distribution on the parameters to a posterior distribution

that captures both the information from the prior and from the observed data. As with

classical inference, the posterior distributions allow prediction and inference. As the amount

of observed data increases, the results from Bayesian and classical inference tend to converge,

since information added through the prior distribution is downweighted relative to the data’s

contribution.

Martz, Waller and Fickas (1988) and Martz and Waller (1990) studied similar system relia-

bility problems with binomial data, and also faced the problem of integrating expert opinion

at different levels. They assumed that they were supplied with beta distributions for the

reliabilities of individual components and of the subsystems made up of those components.

Beta distributions for the components are then used to derive “induced” distributions for
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subsystems (for example, a series subsystem is modeled as a product of random variables

with the components’ beta distributions). This “induced” distribution is then combined

with the subsystem’s beta distribution, and the combination is itself approximated using a

beta distribution, with parameters determined by the method of moments. This procedure

is repeated until the full system level is reached. Graves and Hamada (2004) reanalyze these

data sets using the same Bayesian methods as in the present paper, which do not require

approximations. A shortcoming of the Martz et al. (1988) method is that the full system

data do not inform estimates of single component reliability. Because of this and since full

system tests suggested lower reliability than the component and subsystem tests would in-

dicate, Graves and Hamada (2004) obtained substantially smaller reliability estimates for

some components.

Many reliability models do not consider prior expert opinion and data at multiple system

levels. Springer and Thompson (1966, 1969) and Tang, Tang and Moskowitz (1994, 1997)

provide exact or approximated system reliability distributions obtained by propagating the

component posteriors through the system structure. Thompson and Chang (1975), Chang

and Thompson (1976), Lampkin and Winterbottom (1983), and Winterbottom (1984) use

approximations for exponential lifetimes rather than binomial data. Others propose methods

for evaluating or bounding moments of the system reliability posterior distribution (Cole

(1975), Mastran (1976), Dostal and Iannuzzelli (1977), Mastran and Singpurwalla (1978),

Barlow (1985), Natvig and Eide (1987), and Soman and Misra (1993)). These moments can

also be used in the beta approximations employed by Martz, Waller and Fickas (1988) and

Martz and Waller (1990). Soman and Misra (1993) proposed a distributional approximation

based on a maximum entropy principle.

3.2. The Binary System and Component Model. The model developed here assumes

that the status of each component, subsystem and full system is in just one of two states:

pass or fail. This status of the tested unit is the simplest outcome of a reliability test.

The restriction to binary status implies that independent testing results in a binomial

likelihood. The representation of the full system as connected subsystems and components
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in series makes the status of the system and subsystem functionally dependent on the status

of the components. As a result, the parameters of the binomial likelihood of subsystems and

the full system are functions of the parameters of the components. By coding a success as a

one and a failure as a zero, the outcome is modeled by a Bernoulli random variable Y with

distribution governed by a single parameter, the probability p it takes value one (namely, a

success). The probability of a failure, the only other possible outcome, is therefore, 1 − p.

The goal of the modeling is to use the available data to estimate the parameters pi for

each component, subsystem, or full system, Ci, with their associated uncertainties. Primary

interest likely lies in obtaining an estimate of the probability that the overall system C1

succeeds, namely p1.

As discussed previously, combining data and prior information at different levels within

a reliability diagram has often proven problematic, both from the perspectives of compu-

tational tractability and model consistency. Our solution to this dilemma is to simply re-

express nonterminal (subsystem) node probabilities in terms of terminal (component) node

probabilities using deterministic relations derived from the system reliability diagram. For

example, from Figure 1, it is evident that the probability that subsystem C7 functions, p7,

is equal to the product of the probabilities that each of the components p10 through p17 all

function. Thus,

p7 =
17∏

i=10

pi

Similarly, the probability that subsystem C4 functions is p7 = p8 × p9.

Note that variable substitutions based on the reliability diagram do not uniquely identify

a joint distribution on the terminal node probabilities, in this case p10 through p17. However,

this approach does use the marginal distribution of the system reliability to provide a sensible,

although not necessarily unique, solution for the joint distribution of all of the component

and subsystem reliabilities. See Johnson et al (2003) for additional details.

3.3. Prior Specification. In many applications, engineering judgment can play a impor-

tant role in assessing system reliability, particularly for large complex systems where data
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collected on individual components is sparse. Judgment and expertise are always required

to develop the system representation and determine which data are relevant to the analysis.

In this analysis, we explore the statistical modeling appropriate for two additional types

of judgment:

(1) The expert provides precise information about the reliability of a single component

by specifying a probability distribution for the failure probability of the component.

(2) The expert identifies a component as belonging to a group of components with similar

reliability. This assumption does not require that the components are physically

similar, only that their reliabilities are similar. For example, all the high reliability

components might be judged as being similar. In this case, the expert provides a

family of probability distributions for the failure probability.

3.3.1. Precise Information. Engineering judgment may be available from several experts,

and the quality of information obtained from each expert may vary. In the model, we

therefore assume that the prior density obtained from expert m concerning a specific value

of pi takes the form of a beta density, and we let the set of combinations of (i,m) for

which engineering judgment is available be denoted by S1. A beta density is a flexible class

of probability distributions that assigns mass between 0 and 1, thus making it suitable to

capture judgment about probabilities. See Gupta and Nadarajah (2004) for more details on

the beta distribution and how the choice of parameters influences the mean and variance of

the distribution.

More specifically, we assume that the prior information is modeled as:

Γ(Nm + 2)

Γ(Nmπi,m + 1)Γ[Nm(1 − πi,m) + 1]
p

Nmπi,m

i (1 − pi)
Nm(1−πi,m)

≡ B(pi ; Nmπi,m + 1, Nm(1 − πi,m) + 1).(1)

Note that this is not the standard parameterization of the beta distribution, but is selected

for the desirable feature that it has the mean of the distribution as one of the parameters,



10 ANDERSON-COOK, GRAVES, HAMADA, HENGARTNER, JOHNSON, REESE, WILSON

πi,m. To equate the more standard B(a, b) with mean a/(a + b), set a = Nmπi,m + 1 and

b = Nm(1 − πi,m) + 1. See Gupta and Nadarajah (2004) for details.

In equation (1), πi,m represents expert m’s point estimate of pi, and Nm represents the

precision of expert m. The parameter Nm is unknown, and for concreteness, we assume that

each expert precision parameter Nm is drawn from a gamma density with known parameters

αm and βm, parameterized here as

G(Nm ; αm, βm) =
βαm

m

Γ(αm)
Nαm−1

m exp(−βmNm).

In summary, engineering judgment that a particular parameter value is approximately

πi,m can be captured by a beta distribution. The precision of the engineering judgment

is unknown a priori; the parameter capturing the precision is Nm, and is estimated from

data, but with an informative prior. The prior distribution on Nm is a gamma distribution,

which allows additional flexibility to be added to adjust the variability of the estimate to

one that appropriately reflects system knowledge. By estimating Nm, some assessment of

the value added by a given expert’s judgement can be made. An effect of estimating Nm is

that the expert’s information will be downweighted if it is inconsistent with data. Note that

engineering judgment has the form of a binomial likelihood with a maximum at πi,m. This

convention eliminates the possibility that the joint density specified on all model parameters

is improper, and also implicitly handles the aggregation problem identified by Bier (1994)

by simply treating engineering judgment as a form of “data.”

Simple examples of the differences between fixed and random N are illustrated in Figure

2. In each case, the data are x successes in n = 50 binomial trials with unknown success

probability p. The prior distribution for p is B(Nπ,N(1 − π)) for π = 0.5, and we compare

the case where N is fixed at 50 with the case where N has a gamma prior distribution with

parameters α = 5 and β = 1/10 (so that E(N) = 50). In each plot, the solid curve is

a posterior density estimate for p in the fixed N case, while the dotted-dashed curve is a

density estimate for p in the random N case. The left plot is for the case of x = 25 successes,

which is exactly consistent with the prior mean of π = 0.5. In this case, the data are not
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Figure 2. Comparison of fixed and random prior sample sizes. Shown are
posterior densities of p with a B(Nπ,N(1 − π)) prior with π = 0.5 based on
x = 25 (left) or x = 45 (right) successes in n = 50 trials, for the cases of fixed
N = 50 (solid curves) or random N with a prior distribution with mean 50
and SD 22 (dotted-dashed curves).

very informative about N so that its posterior is close to its prior; the expert could be very

reliable (large N) or unreliable and fortunate to have guessed the right value (small N).

The posterior mean of N is 52, slightly larger than its prior mean of 50, and its posterior

standard deviation (SD) is about the same as its prior SD of 22.4. The posterior mean of p is

0.5, and its posterior SD is essentially 0.05 in either the fixed or random N case. Therefore

no harm is done by allowing N to be random in the case of data that agree with the prior.

However, if the data and the prior disagree, as in the right plot of Figure 2 with x = 45,

the random N analysis gives different results. For fixed N = 50, the inference is like 70

successes in 100 trials so E(p) = 0.7 and SD(p) = 0.046. When N is random, its posterior

mean of N is 18 with SD 11, so that the prior for p is deemphasized and we get E(p) = 0.8

and SD(p) = 0.063; the mean is closer to the high reliability implied by the data, while the

standard deviation is larger because the prior is contributing fewer data points. The fixed N
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analysis is misleading because the accuracy of the prior has been overestimated, as is shown

by its disagreement with the data, and the random N analysis behaves accordingly, treating

the prior as useful information but not as accurate as initially thought.

3.3.2. Component Groupings. When prior information regarding component success prob-

abilities is unknown, but groupings of “similar” components are available, equation (1) is

augmented in the model by assuming that πi,m is replaced by ρm,g, where ρm,g represents

the common, but unknown, success probability assigned by expert m to components in the

broader group g. The form of the prior on model parameters from such information takes

the form
∏

(i,m)∈S2

B(pi ; Kmρm,g + 1, Km(1 − ρm,g) + 1).

Here, S2 denotes the combinations of (i,m) for which such grouping information is available.

As in equation (1), the parameter Km is assumed to be drawn a priori from a gamma

density having parameters ζm and ηm. The prior success parameter ρm,g for a particular group

is assumed to be from a beta density with known parameters δg,m and ǫg,m, respectively. Here

ρm,g can be interpreted as a common mean estimate of the individual pi’s for elements within

that group.

This approach allows for knowledge from different components to be leveraged across

components deemed to be similar, to increase predictive power and exploit common features

in the system.

3.3.3. Hierarchical Model to Address Data Granularity. In this analysis, a hierarchical prior

is used on the components/terminal nodes. This prior is used not to capture expert judgment,

but to render estimates of the overall system reliability insensitive to the level of detail

included in the system event diagram.

As an illustration of this point, consider a simple system comprised of three components

connected in series (similar to a system, C1, comprised only of C2, C3 and C4, with no

other components) and suppose that a single binomial observation with four successes and

one failure is observed at the system level. Without a hierarchical specification on the
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component probabilities and under the model assumptions stated above with uniform priors,

the likelihood of the system reliability would be proportional to

(p2p3p4)
4(1 − p2p3p4)

where the system reliability, p1, is assumed equal to p2p3p4. This is obtained using the fact

that since four of the trials resulted in successes, implying that components C2, C3 and C4

all worked, which occurs with probability p2p3p4. The trial which resulted in a failure had

probability, 1 − P (Success) = 1 − p2p3p4.

If we assume a uniform distribution for the prior of each of p2 to p4, the posterior mean of

p1 in this model is 0.507. When the system is not decomposed into subsystems and a uniform

prior is assumed on p1, the posterior mean on p1 (with a uniform prior) is 0.714. Furthermore,

under such naive model specifications, the bias attributable to adding components to the

event tree becomes more severe as the number of components in the system increases.

Suppose instead that the reliabilities of components C2, C3, and C4 are not assumed to

have independent uniform distributions. Instead, each component’s success probability is

drawn from a beta density (as given in equation (2) with parameters Jγ and J(1−γ), where

the parameter J is assumed drawn from a gamma density function with parameters τ and

φ. The parameter γ is assumed to be drawn from a beta density with parameters ψ and ω.

Γ(J)

Γ(Jγ)Γ[J(1 − γ)]
pJγ

i (1 − pi)
J(1−γ)

≡ B(pi ; Jγ, J(1 − γ)).(2)

Using this hierarchical prior specification on p2 to p4 with ψ = ω = 0.5 results in a

posterior mean of 0.718 for p1, while the same specification with ψ = ω = 1.0 results in a

posterior mean of 0.687. Both estimates are largely insensitive to the number of components

specified for the system. This is an important feature of this model, as the availability of
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data for different components and subsystems in the system should not play an important

factor in influencing overall reliability estimate of the system.

3.3.4. Joint Distribution. To obtain a posterior distribution for the Bayesian analysis, the

likelihood which contains the information captured in the data must be combined with the

expert judgement summarized in the prior distributions. The posterior is proportional to

the product of the likelihood times the prior distributions. For more details, see Martz and

Waller (1982). Combining the information from the likelihood and priors leads to a joint

posterior distribution on the model parameters proportional to

[p,N,ρ,K, γ, J |x,n,π,α,β, ζ,η, δ, ǫ, τ ,φ,ψ,ω] ∝

∏

i∈S0

pxi

i (1 − pi)
ni(3)

×
∏

(i,m)∈S1

B(pi ; Nmπi,m + 1, Nm(1 − πi,m) + 1)

×
∏

m:∃(i,m)∈S1

G(Nm ; αm, βm)

×
∏

(i,m)∈S2

B(pi ; Kmρm,g + 1, Km(1 − ρm,g) + 1)

×
∏

m:∃(i,m)∈S2

B(ρm,g ; δm, ǫm) ×
∏

m:∃(i,m)∈S2

G(Km ; ζm, ηm)

×
∏

i∈S0

B(pi ; Jγ, J(1 − γ))

× B(γ ; ψ,ω)G(J ; τ ,φ).

In equation (3), we have an expression for the joint posterior distribution of the parameters

of primary interest (p,N,ρ,K, γ,J), which are shown to the left of the vertical line on the

left hand side of the expression. The vertical line indicates that we are conditioning on the

other parameters of the model (x,n,π,α,β, ζ,η, δ, ǫ, τ ,φ,ψ,ω) to obtain an expression
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that is proportional (∝) to the joint posterior distribution. S0 denotes the set of terminal

nodes/components.

In this expression, values of nonterminal node probabilities (such as those for elements

C1, C2, C4 and C7) are assumed to be expressed in terms of the appropriate functions

of terminal node probabilities, as defined from the system event diagram. The first line of

equation (3) corresponds to the contribution from observed data for each available component

from the likelihood function. The second and third lines correspond to the contribution of

expert opinion for individual components through the component priors, while lines 4 and 5

summarize the information from experts on groups of components.

An examination of the contributions to the joint posterior distribution arising from the

prior information reveal obvious similarities, but there are also important distinctions be-

tween these parameterizations. For example, the value of Nm represents the precision of the

expert’s opinion, while Km describes the similarity of item reliabilities within a grouping.

3.4. Implementation: Markov Chain Monte Carlo. The joint posterior distribution

in equation (3) does not have a familiar distributional form, so it is not immediately obvious

how to do inference and estimation. Recent advances in Bayesian computing allow one to

obtain a random sample from the joint posterior distribution. Once one has a random sample,

then inference can be made on any of the quality characteristics of interest. Gibbs sampling

(Casella and George 1992) is one method to draw random samples from the joint posterior

distribution. Another method is the Metropolis-Hastings algorithm (Chib and Greenberg

1995).

One issue with Gibbs sampling is whether the draws are approximately a random sample

from the posterior distribution; this is referred to as the convergence of the Gibbs sampler.

To mitigate the impact of initial values chosen for the parameters, a burn-in is typically

performed in which the Gibbs sampler is run a number of times and the draws thus ob-

tained are discarded. To reduce dependence between draws, the draws can be thinned by

retaining every kth draw. See Raftery and Lewis (1996) for more discussion of diagnostics

for convergence.
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The joint distribution on model parameters specified in Section 3.3.4 does not lend itself

to analytical evaluation of the system or component reliabilities. However, a componentwise

Metropolis-Hastings algorithm can be implemented in a relatively straightforward way. In

our version of such a scheme, we use a random-walk Metropolis-Hastings algorithm with

Gaussian proposal densities specified on the logistic scale for the terminal node probabilities,

as well as for ̺0 and ρm,g. Precision parameters are similarly updated using a random-walk

Metropolis-Hastings scheme with Gaussian increments specified on the logarithmic scale.

The resulting Metropolis-Hastings algorithms are implemented using YADAS (Graves, 2001

and 2003).

3.5. Posterior and Predictive Distribution. Using engineering judgment, reliability

classes are formed as follows. System elements C2-C4 are assigned to Group 1, elements

C5-C9 to Group 2, and C10-C17 to Group 3. These groupings are handled as in Section

3.3.2. Note that there is great flexibility about the creation of groups, as some of them in-

clude both components and subsystems; also, the groupings need not be mutually exclusive.

Beta distributions with common, fixed group means (π1-π3) and a single, common precision

parameter (N1,2,3) are assumed for each of Groups 1-3. A common precision parameter is

incorporated for each group, since a single expert provided all this information. The indi-

vidual components in this system are C3,C5,C6 and C8-C17. As described in Section 3.3.3,

a hierarchical prior with unknown mean and precision parameter (γ and J , respectively) is

assumed for components in Group 4. Also, gamma priors with parameters (5,1) are assumed

for both precision parameters (N1,2,3 and J), and a noninformative prior (ψ = ω = 0.5) is

assumed for γ.

Applying the model discussed in Section 3.3.4, we obtained the posterior distributions on

the component reliabilities for each of the components and the expert precision parameters.

The system reliability posterior distributions with the system data included and system data

excluded are plotted in Figure 3. It is clear that when the flight test data are included a much

more precise estimate of system reliability can be obtained, as noted by the much narrower

posterior distribution. However, it should also be noted that the posterior distribution
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Figure 3. Posterior distributions for the reliability of the system represented
in Figure 1. The solid black lines are based on the model that included the
full-system flight tests; the dashed lines show results without full-system level
data. The 95% interval is based on results without full-system level data

obtained without the benefit of the flight data, and only based on the indirect component

and subsystem data, is able to appropriately estimate a sensible range of system reliability

values.

Posterior distributions for all components are given in Figure 4. In the cases where the pos-

terior distributions are very similar, such as C3, these correspond to cases where component

level data are available. When the marginal posterior distribution based on component-level

data only is substantially more disperse than the posterior based on results using the flight

data, such as C1, this corresponds to situations where no components level data is available.

In these cases, the flight data is highly beneficial since the entire system working coupled
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with the series form of the system provides information that these components also worked.

We note the agreement between the two posterior distributions (full system tests included vs

full system tests excluded). In every case, the 95% highest posterior density (HPD) region

includes essentially the entire distribution with full system information included. This vali-

dates that the full system data and the combined component data are summarizing system

reliability similarly, but just with different precision. In addition, it is worth noting that

this approach can provide a system estimate of reliability even in the absence of full system

data, such as is encountered for the nuclear stockpile. Note that for this case, since there is

a great deal of flight test data, the data dominates the prior in the first calculation.

Also of interest is the posterior distribution for the expert precision parameter N1,2,3. The

posterior mean for this distribution is 12.2. This suggests that the expert’s opinion is worth

approximately 12 full system tests. Given the prior mean of 5, we conclude that the expert is

reasonably well calibrated with the system structure and data. This is also a useful measure

to determine the added benefit of including expert opinion in the analysis.

3.6. Diagnostics. Two concerns commonly encountered in modeling system-level reliabili-

ties using series diagrams like that depicted in Figure 1 involve the extent to which different

components function independently and whether system (or subsystem) reliability decreases

when components are assembled. A simple cross-validation diagnostic useful for assessing

the importance of these influences can be constructed by iteratively omitting data collected

at each node from the estimation procedure, and then examining the predictive distribution

for the omitted datum.

Such a procedure is applied to data obtained for this missile system and resulted in an

estimate of 0.83 for the predictive probability of observing fewer successes at the system-

level than are actually observed. It therefore seems that there is little evidence to support

the notion that the reliability of the system is degraded as components are assembled and

required to operate as a unit.

There is, however, some indication of model lack-of-fit at the component level. For compo-

nents 10 and 17, the predictive distribution for observing fewer successes than are obtained
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Figure 4. Posterior distributions for the reliability of the system represented
in Figure 1. In each pair of plots, the more peaked curve represents the
marginal posterior density based on all test data, while the more dispersed
curves represent the marginal posterior density using only component-level
data (i.e., excluding system-level tests).

at these nodes is approximately 3.5%. The same number of failures are observed at each of

these components, and these two components had the highest failure rate of any components

in the system. Model lack-of-fit in this instance might thus be attributed to the fact that

the hierarchical mean estimated for the terminal nodes, γ, increased substantially when the
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datum for either of these nodes is omitted, resulting in an overly optimistic estimate of this

probability. Possible remedies for such model inadequacy would be to stochastically decrease

the prior assigned to the value of J , or to introduce a separate hierarchical group for these

nodes. In this case, neither remedy appeared to substantially affect estimates of system

reliability in subsequent sensitivity analyses.

4. Conclusions

In this paper, a Bayesian approach to combining component, subsystem and system data

with expert judgement is presented. It allows for the flexible combination of multiple sources

of data with different weights for the various sources of information. In addition to being

computationally manageable with the use of freely available software, the approach reduces

the final estimates dependence on which components have data available. This robustness

to the structure of available data is appealing, since frequently the availability of data at

various components is a function of cost or convenience.

The approach also allows for comparison of results between the complete analysis and an

analysis when full system data is not incorporated. The similarity of the two sets of results for

this system validate that the system has been appropriately modeled, and provides insights

into the usefulness of this approach when full system data may not be available.
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